长江书屋

第六百六十九章 frankl的并封闭集合猜想(第2页)

天才一秒记住【长江书屋】地址:https://www.cjshuwu.com

没错,就是那个对“并封闭集合猜想”

的证明。

读博期间,Gilmer绞尽脑汁,花了一整年时间却毫无进展,只是搞明白了为什么这一看似简单的问题难以解决。

为此,他还去找过导师萨克斯。

但导师也曾在该问题上停滞不前,因而他既不看好Gilmer的研究,也不愿重新碰这一领域。

据Gilmer回忆,当时导师差点把他赶出房间。

但现在,重回校园转一圈的Gilmer有了个新想法:用信息论及相关原理解决并封闭猜想问题。

Gilmer的思路是找反例。

根据并封闭集合猜想,一个正常的并封闭集族中,至少应该有一个元素在多于一半的集合中出现。

既然如此,只要想办法构造一个特殊的集族,里面没有一个元素出现在超过1%的集合中,这个猜想就会被证伪,反之如果构造不出来,那么猜想就可能成立。

现在,我们用信息论视角看这一猜想:

正常来说,如果从集族中任意挑出两个集合,这两个集合取并集后,并集中的元素比原来两个集合更多,其信息熵应该比原来的单独两个集合更低。

然而如果基于“没有一个元素出现在超过1%集合”

这个限制条件,任意两个集合取并集后,计算出来的信息熵竟然比原来的单独两个集合更高。

这显然是不可能的,因此不存在这么一个特殊的集族,Glimer的反例也没有找到。

但这也就意味着在“并封闭”

集族中,至少存在一个元素,会出现在超过1%的集合中。

2022年11月16日,Gilmer将这一思路写成论文,发表在了arXiv上。

当然,他这篇论文还不是“完全体”

,也就是说并没有完全证明并封闭集合猜想——

毕竟这只是至少1%,还不意味着原来的并封闭集合猜想中的至少50%就成立。

但这个新思路已经足够让学界震动。

普林斯顿大学数学家RyanAlweiss评价“引入信息量”

这一操作:非常聪明。

仅仅几天后,就有3个不同的数学研究组基于他的研究,先后发表了研究论文,随后也有更多研究者跟进,他们所在院校机构有牛津、普林斯顿、哥大、布里斯托等。

在后续研究中,对“并封闭集合猜想”

的概率值证明,被推进到了38%。

令这些数学家好奇的是,基于Gilmer的研究,他自己上手将概率值推进到38%并不难。

对此,Gilmer表示,自己已经五年多没碰数学了,确实不知道如何进行分析工作来将其进一步推进下去。

不过,他也认为,正是因为对相关数学方法的生疏,让他跳出了常理,用圈外办法取得突破。

喜欢数学心请大家收藏:()数学心

本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

如遇章节错误,请点击报错(无需登陆)


新书推荐

神圣罗马帝国特种岁月九龙吞珠绝世保安三国之天下无双神农别闹快穿之路人不炮灰总裁大人超给力玄学大佬只想当咸鱼重生之都市邪仙好男人他有金手指[快穿]万界时空穿越者武林店小二极品捉妖系统乱世情歌:农门女将枭门邪妻万界基因(系统)当幸运值为max时当反派绑定了女主系统西游记:四川话版异世界:狼人领主,我靠魅魔发家韶光艳是他唯一的光懒妻教育得当,三胞胎有事就喊爹抢救大明朝